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In the present paper we study the motlon of a two-rotor gyrocompass. We con-
slder the natural oscillations of the gyrocompass and its ballistic devia-~
tions which occur during the ship's maneuvers, We also study the motion of
an undamped gyrocompass under the action of random forces,

1, Equations of motion of & two-rotor gyroocompass relative to a geograph-
1o reference system. A two-rotor gyrocompass [1,2] consists of two gyroscopes
enclosed in a sphere called the gyrosphere which is immersed in a liquid (Fig.1)
The gyroscope rotor axes are horizontal. The gyroscope housing axes are loca-
ted vertically and may be rotated relative to the gyrosphere on bearings
fixed on the lnner surface of the gyrosphere. The housing axes of both gyro-
scopes are interconnected by a four-linkage mechanism — an antiparallelogram.
Therefore, the rotations of both gyroscopes about thelr housing axes take
place in opposite directions by angles which are equal 1in magnitude. The
center 1link of the antiparallelogram 1s attached to the inner surface of the
gyrosphere by two springs which try to keep the gyroscope housings in the
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posltions indicated in Fig.l. The coordlnate axes x, Ys 2 (Fig.1 and 2)
are rilgidly fixed to the gyrosphere. The origin ¢ coincides with the geo-
metric center of the gyrosphpre. The xz-plane in which the rotation axes of
the gyroscopes are located 1s called the equatorial plane of the gyrosphere,
The y-axis is directed upward normal to this plane. The direction of the
z-axls 1s parallel with the bisector of the angle formed by the gyroscope
rotation axes. The x-axls is perpendicular to the y- and z-axes and, together
with them, forms a right-handed orthogonal trihedron xyz .

The center of gravity of the gyrosphere together with all of the elements
placed in 1it, 1s located on the y-axls below the geometrlc center of the
gyrosphere,

The locatlion of the rotation axes of gyroscopes 1 and 2 relative to
the gyrosphere can be defined by the angle & of rotation of gyroscope 1
around 1ts housing axis (Fig.2). With each of gyroscopes 1 and 2 is
assoclated the coordinate axes x,,y,,z, (1=1,2
with origin at the center of gravity of the
corresponding gyroscope. The z,-axis 1s direc-
ted along the rotation axis of the gyroscope;
the y,-axls, upward along the gyroscope housing
axls; the direction of the x,-axls 1is perpen-
dicular to the y, - and gz, -axes, and 1s chosen
such that the trihedron x,y,z, 1s right-handed.
We note that the gyroscope hqusing axes y, and
y. and the y-axls of the gyrosphere are paral-
lel, In Plg.1l ¢ denotes the angle which the
rotation axis z, of gyroscope 1 makes with
Fig. 3 the z-axls of the gyrosphere at the orilgin when

the springs are sltuated along the z-axis of

the gyrosphere. The coordinate axes x,, y,» 2, (1 = 1,2) are the Résal axes
of gyroscopes 1 and 2 , respectively.

As the orientation (reference) axes we choose the coordinate system gn(
whose origin ¢ coincides wilth the geometric center of the gyrosphere while
the axes €E,n,{, are orlented in the following manner: the (-axls 1s direc-
ted along the radius of the Earth, while the g~ and m-axes are located in
the tangent plane to the Earth's surface and directed thus: the g-axis to
the East and the n-axls to the North.

The position of the gyrosphere
Table 1 relative to the coordinate system
En{ 1s determrined bty the Euler

s " ¢ angles o,8,y (Fig.3) of which ¢
x* — CcOoS o -—sina 0 is the angle of rotation around
y* sin a sin 3 — cos a sin 3 cos 3 the ¢-axls, 8 1is the angle of
z —sina cos B cos 2 cos 3 sin B8 rotation around the x*-axis lying

in the horizontal plane (the angu-
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lar velocity vector ' 1s directed along the negative direction of the x*-
axis), while y 1s the angle of rotation of the gyrosphere around its z-axis.

Table 1 presents the values of the cosines of the angles between the axes
x*,4%, 2 {x* 13 the nodal line, y* 1s the transverse axls) and the axes
E,n,¢C.

Since the dependenciles

X0 = x* cos v + y*® sin 7, Y= —x*siny + y*cosy (1.1)

hold between the unit vectors of the coordinate axes x,y 8nd x*,y*’, the
cosines of the angles between the axes x,y,» and the axes ¢€£,n,{( will have
the values shown in Table 2.

Table 2
g n 4
z | —cosacoSY4 sinasinBsiny | —sinacosy—cosasinBsiny cosfBsiny
Y cosasiny 4 sinasinf cosy sin a sin v — cos @ sin B cos Y cosBcosy
z — sinacos B cos @ cos B sin B

The values of the cosines of the angles between the gyrosphere axes x,z
and the Résal axes x,, z, (£ = 1,2) of the gyroscopes (Fig.2) are shown in
Table 3.

Let us now compute the
instantaneous angular
l EX ‘ z, { Xy ’ z4 velocity of the gyrosphere
and the 1nstantaneous
angular velocity of each

Table 3

x
z

sin (8 — &)
cos (e — §)

cos (e — §)
—sin (e — §)

—sin (e — §)
cos (e — §)

cos (& — §)
sin (& — )

of the gyroscopes. The
coordinate trihedron gn¢ (the reference system), geographically orlented
as indicated above, because of the Earth's rotatlon and of the ship's motion
on the Earth's surface, has an instantaneous angular velocity u whose pro-
jections on the axes £, n, { will be

v . v
u1='—%’ u2=Ucosq3+—}E—f—’ u3=bsqu+—1—L;—uncp (1.2)

Here U 1is the diurnal angular velocity of the Earth, ¢ 1s the latitude
of the ehip's position, VE and UN are the East and North components of the
ship's veiocity, R 4is the Earth's radius.

The projections of the instantaneous angular velocity of the gyrosphere
on its axes x, y, z are denoted by p, ¢, r, respectively, They will be
p=a cosPsiny — P cosy 4+ u, (— cosg cos ¥ -+ sina sin P sin 1) +

+ u, (— sina cos Y — cosq sin P sin 1) + ug cos P sin ¢
g = o ccs P cosy + B siny + u, (cosa sin v + sina sin f cos 1) +
-+ u, (sing sin 7 — cosq sin P cos 1) + uygcos f cos ¢
r=osinp 4+ 7 — u;sing cosP + u, cosq cos P + ugsinp  (1.3)
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The projections of the instantaneous angular velocities of each of the
gyroscopes on thelr Résal axes x,, y,, z, are denoted by Dis 15 Ty (1=1,2),
respectively., They will De

pp=pcos(e—8)+ rsin(e—39), g=qg-+38

. (1.4)
ry= — psin (e — 8) + rcos (e — 8) + @,

ps == pcos (e—08)—rsin(e—38), ¢g=¢g—0
ry, = psin (e—8) 4+ r cos (e — 8) + ¢q

where ¢f and ¢2' are the angular velocities of the natural rotations of
gyroscopes 1 and 2 , respectively. The angles o, B, y, 8, o, and g,
are taken as the generalized coordinates of the system under consideration.

The equations of motion of the system can be set up with the aild of the
second method of Lagrange, Here we shall limlt ourselves to a study of the
precession motion of the system and we shall neglect its nutational osecil-
lations, The latter 1s equivalent to the assumption that the kinetic moment
of the whole system equals the geometric sum of the kinetic moments of the
gyroscopes, while the kinetic moments of each gyroscope is directed along
its natural rotation axis.

G~ leiziﬂ {i=1, 2) ('15)

Under these assumptions the kinetic energy of the system in its motion
wlth respect to the support polnt ¢ willl be determined by the approximate

expression ,
T=Y,C(rf 4+ 1) {1.6)
Here ¢, denotes the moment of inertles of the gyroscope rotor with respect
to the axis of its natural rotation.

The drag force moment and the actlve rotatlon moment operate around the
natural rotation axes of the gyroscopes. By assuming that the total moment
of the forces with respzct to the axis of natural rotation of each gyroscope
Qwiss 0 (i=1, 2)» and by taking into account that according to (1.6), {1.4)

and (1.3) o1 aT
= : — =0 i=1, 2 (1.7)
Ocpi- Clrh a(pl ( )
from the Lagrange equations of the second kind we obtain the relations
C,r; = const (i=1,2) (1.8)
The natural moments of gyroscopes 1 and 2 are denoted
Ciry = By, Ciry =B, (1.9)

In accordance with (1.4), the quantities r, {{ = 1,2) are mainly deter-
mined by the values of the angular veloclties ¢," of the natural rotations
of the gyroscopes since the latter are very large - of the order of 2000 sec?,
For g, = g’ the difference Fp — 73 = 2p sin (¢ — 8) 1s negligibly small
in comparison with r, and r, , Therefore, according to (1.4), we can
assume that 7, ~r,, whence follows the equality of the natural moments of
both gyroscopes B, ~ B, = (1.10)
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Let us now pass on to setting up the Lagrange equations for the noncyclic
coordlnates a, B, v, 8 . In accordance with (1.3), (1.4) and (1.6), the
parvial derivatives of the kinetic energy T with respect to the generalized
veloclities are

= 2B cos (e — 9) sin B, o5 0, 7 2B cos ( )s 75 ( )

The partial derivatives of the kinetic energy 7 with resect to the gene-
ralized coordinates have the form (1.12)

0T / 0o = 2B (— u, cos a cos B — u, sin a cos B) cos (¢ — 9)
oT / 98 = 2B (o cos B - u, sin a sin B —
— ugy cos o sin B -+ us cos B) cos (e — d), T joy =0

0T /38 = 2B (&' sin B + 7 — uy sin & cos B 4 u,cosacosB + ug sin B) sin (e — 8)
To compute the kinetlc energy (1.6) of the system, only the rotation of
the coordinate trihedron gn{ around the origin was taken into account but
the motion of the origin was not considered. Therefore, to the number of
external forces appllied to the system there should be added the force of
inertia — mW applied at the center of gravity of the gyrosphere, where m
1s the mass of the gyrosphere together with all of the elements enclosed
inside it, and W 1is the acceleration of the origin of the coordinate axes
En{ , l.e. the acceleration of the point of support of the gyrocompass. The
instantaneous velocity of the point of support of the gyrocompass is

v = (RU cos ¢ + vg) §° -+ onn® + w0 (1.13)
Here ¥y denotes the vertical component of the ship's velocity. We usu-
ally take Vg = (0. However, in certain cases, for example, in the case of
ship motion on waves, 1t 1is necessary to take into account that YUy = 1?}
where by R 1s meant the distance from the point of support of the gyrocom-
pass to the Earth's center.

By taking into account that ¢°= v,/R , in correspondence with (1.13) the
components W, , W,, Wy of the acceleration of the point of support of the
gyrocompass along the axes €,n,{, of the cocrdinate trihedron €&n{ rotating
with angular veloclity Wu , can be represented by

Vnv
W, = vg —2vNUsincp—vE%"uncp+2chcosq>+ ==

. . vy? , UNTy
W, = vy + RU?sin@ cos@ + 2vgU sin @ + -0 @ + —
2 2
Wy = v’ — 2vgU cos — RU? cos? ¢ — %_— — ’i}VI_ (1.14)

In case % = 0, Expressions (1.14) take the form

W, = vg — 2vnU singp — UE;N tan @

2 2
W, = vy + RUZsin ¢ cos @ + 2vgU sin @ —l—%—uncp, Wy=— —%— (1.15)
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where

V=V (RUcosp + vg)® + val

(1.16)
The resultant of the Earth's gravitational force
force

P and of the inertial
— mW , is applied at the center of gravity of the gyrosphere and can
be represented N —

— mWi§® — mWyy® — (P + mWj) §°

(1.17)
The generalized forces along the coordinates q«, 8, y, corresponding to
the resultant force N are the partial derivatives with respect to these
coordinates of the function 1, having the form [ 3]
I, = — mW§ — mWpm, — (P + mWy) L
where £,, ng, (.
sphere,

(1.18)
are the coordinates. of the center of gravity of the gyro-
By taking into account that the center of gravity of the gyrosphere
lles on the y-axls at a distance

! from the origin,
determlne the values of €., n., (.

from Tablc 2 we can

Substituting these values into Expression (1.18) we bring it tc the form
I, = ImW, (cos a sin v + sin a sin B cos 7) +
+ Im W, (sin asin y — cos a sin B cos v) + | (P + mW,) cos B cos v (1.19)

The potentlal energy of the springs which connect the center link of the
antiparallelogram to the shell of the gyrosphere has the form

— M1, = Y, (AL)? (1.20)

where ¢, 1s the stiffness and 47 1is the deformation of the spring. From
Fig.4 we see that

AL=V L* +'p%sin®d — L, = h +

25 1 pisinté

g 5 R

p?sin?§
5T —

L, is the natural length of the spring,

(1.21)

L —Lo=h 18 the initial
stretch of the spring.

Having substituted the value of Az 1into
Expression (1.20) we get the following expres-
\ sion for the potentlal energy of the spring:
\}
L ¢ o1 . A 9
L 7 3‘3 _[12:—;—c1(h2 1—Thp2sm26—}—...) (1.22)
L=
7 b )
53 F 8 where terms containing sin 8 to higher than
g
A %\ e the fourth degree are not written down and are
é\;p—"/ - discarded in the subsequent discussion. By
N
? denoting =1, + I1, (1‘23)
Fig., 4

we get for the generalized forces, correspondlng
to the coordinates

a,B,vs8, the following
expressions:
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Qq = 0I1 / 92 = Im W, (— sin a sin v + cos a sin B cos 1) +
+ Im W, (cos a sin 7 + sin & sin B cos 7)
Qp =0l1/ 3B = Im W;sina cos cosy —
— ImWycosacosBcosy — I (P + mW,)sinf cos y
Q, = Il / dy = Im W, (cos & cos v — sin a sin § sin 1) +
+ Im W, (sin a cos y -+ cosasinBsiny) — L (P + mW ) cos 8 sin 7
ATl / 38 = — % sin 8 cos & (% = LYc,hp?) (1.24)

I

Qs

Taking (1.11), (1.12) and (1.24) into account, we obtain the equations of
motlion of the compass with respect to the geographically-oriented axes g,n,§

(1.25)
[2B cos (& — 8) sin 3] + 2B (u, cos a cos B +
+ u, sin a cos B) cos (8 — &) = Im W, (— sin a sin v +
+ cos a sin f cos 1) + Im W, (cos a sin 7 + sin « sin B cos 1) + M*

2B fa’ cos B + u;sinasin B — u,cos asin B +
+ ugcos 3] cos (e —8) = — Im W, sin a cos B cos ¥ +
+ im WycosacosPcosy 4 I (P 4+ mW,)sin 3 cos v + M,.*

[2B cos (¢ — 8)]' = Im W (cos a cos ¥ — sin a sin f sin ) +
+Im W, (sin a cosy + cosasin Bsiny) — [ (P + mW,) cos B sin y + M,*

2B (o' sin B + 1" — u, sin a cos B 4 uy cos a cos B +
+ uysin B) sin (¢ — 8) = xsind cos 8 — M *

Here the dots over & letter or over a bracket signify the time deriva-
tive; ¥, and uy (¢ = 1,2,3) are determined by Expressions (1.14)and(1.2);

M*, M.*, M,*, M, * denote the moments relative to the axes of all the
remaining forces not accounted for in (1.24) which may be applied to the
system,

2, Bquations of motion of a gyrooompass relative to a reference system
attached to the direotion of adsolute velooity of the ship. The motion of
a gyroscopic device relative to a reference system attached to the direction
of absolute veloclty of the ship, was first studied in the works of Ishlin-
skii [4 and 5). Let ZoNel be & coordinate system oriented such that one
of the horizontal axes (the g,-axis) is directed along the vector V of
absolute velocity of the ship’/(it 1s assumed that the vertical component of
the ship's velocity vy = 0). As in Section 1, the (-axis 18 directed up-
ward along the Earth's radius,

The coordinate axes £, and n, (Fig.5) are turned through an angle o
with respect to the axes £ and rn determined by the relations

sing = vy/V  coso = (RU cosop + vg)/V (2.1)



998 Ia.N. Roitenberg

The position of the gyrosphere relative to

V) 7 the reference system £,n,{ 1s determined by
& the Euler angles a,,B,y, of which
oy = o — O (2.2)

while the angles g and y are the same as
those introduced in Section 1.

3 -
— h Rllcas P o0 The projections of the instantaneous angu
lar velocity of the trihedron €eTo ¢ Onto the

l\ axes Eq5, N, { Will be

Fig. 5 Hy = 0, ° = V/R, u3o == Q (2.3)
Q=Using + (vg / R)wag@ + o (2.4)

The projections of the acceleration of the point of support of the gyro=-
compass onto the axes ¢£,, Nes ¢ are

wWe=v, W,=VQ WgS=-—-V/R (2.5)
Substituting into Equations (1.25) the quantities (2.3) and (2.5) for y,

and W, (¢ = 1,2,3) we get a system of equations deseridbing the motlon of
the gyrocompass relative to the axes 8y MNas &

[2B cos (& — &) sin BI' + 2B cos (¢ — 8) (V/ R) sin a; cos § =
= Im V' (— sin a, sin 7 -+ cos &, sin § cos 1) +
+ ImVQ (cos a, sin ¥ + sin a, sin B cos 1) -+ M¢*
2B cos (& — 8) [a; cos B — (V/ R) cos a; sin B -+ Q cos B] =
= — lmV sin a, cps B cos v -+ Im VQ cos a, cos B cos v -+
~+ 1 (P — mV¥R) sin B cos v +

[2B cos (& — 8)] = Im V" (cos a; cos ¥ — sin o, sin B sin 1) +
4 Im VQ (sin o, cos v -+ cos a, sin B sin 7) —
— (P — mV?/ R) cos Bsiny -+ M*

2B sin (e — 8) [y sin B + 1" + (V/ R) cos &, cos B +
+ QsinB] = x sin d cos & — M, * (2.6)

The equations of motion of a gyrocompass relative to axes attached to the
direction of absolute velocity of the ship, obtalned by Ishlinskii in [%)
with the use of the theorem on kinetic moments, have the followlng form in

our notation:
2Bcos(e — 8) [— (V/R) (stn a1 siny — cos a; sin P cos y)— (a1 + ) cos B cosy — B siny]=
= ImV'sina; cosf — ImVQecosa; cosf — I (P — mV*R)sinf — M *

2B cos (e — 8) [(V/R) (sina cos 1+ eds a1 sin P sin 1)— (a1 ) cos P siny+§ cosT]:-My'

{2Bcos(e — 8))'=ImV (cosai cosy — sina sin Psiny) + ImVQ (sina; cosy +
+- cosazsin B sin 7)— I (P — mVR)cosBsiny 4+ M, *

2B sin(e —8) [(V/R (cosaycosP + (@1 + Q)sinf + v 1= xsindcosd — M * 2.7}
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We can show that the systems of differential equations (2.6) and (2.7)
can be obtained one from the other by means of corresponding transformations.
Indeed, by multiplying the first equation in system (2.7) by cos g siny ,
the second by cospgcosy, and the third by sing, and by adding these equa-
tions, we get first equation of system (2.6). By multiplylng the first equa-
tion of system (2.7) by —cosy and the second by —siny, and by adding these
equations, we get the second equation of system (2.6). The third and fourth
equations of systems (2,6) and (2,7) are identical. Thus, the systems of
differential equations (2.6) and (2.7) are equivalent,

3. 8paoce gyrocompass. By a specific cholce of parameters the gyrosphere
of a two-rotor compass turns out to be stabilized in space and can be used
as a sensitive element of a space gyrocompass or of a gyro-horilzon compass.

The equations of motion of a space gyro-
compass can be obtalned from the Equations
(1.25) derived above If we take it that in
the device (Fig.6) the rotor axes of both
gyroscopes, in the case when the rotors are
not rotating, are positioned along the x-
axis of the gyrosphere, to which corresponds
¢ =mn/2 , while the stiffness of the spring
mutually connecting the gyroscope housing
is chosen as follcws:

x = 4B/ Im R (3.1)

Fig. 6 Under the indicated conditions, for any
law of motion of the ship, Equations {1.25)
have the followlng particular solution

o’ = a¥, B° =0, v° =0, 6° = o* (3.2)
where a* and 8* are determined from the relations
sina* = vy /V, cos a* = (RU cos@ + wvg) /V, 2B sin 8* = ImV (3.3)

The equations of small oscillations relative to the position defined by
relations (3.2) have the solution
(3.4)
t t
wi (1) = wr (0) exp (—i S[v—Q(t)] dr), ws (2) = ws (0) exp (—i S[v+Q(r)]d1)
)

0

Here v g
w="F (2 —2a*) vy - i [VB -+ TR (6—6*)]
v g (3.9)
m=WW—w—W+{ﬁ—Mm(MM]
where
v=VgR, E=V4iBE—(ImV) (3.6)

The quantity 0 1s determined from Expression (2.4) which can be reduced
to the form
Q=ust+ a*¥ =V 2[(RU cos @ + vg) W2 —vyWi]
From (3.4) and (3.5) 1t follows that if at the initlal instant ¢ = O
— &%
w(@ =a*©0), BO =70 =0 38(0) =230 (3.7)
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then for any law of maneuvering of the ssip the generalized coordinates
as B, vy and 8§ may be varied in the following manner:

at) =a*(t), BB =0 1@ =0 () =05 () (3.8)
1.e. the only deviatlons of the devlce willl be deviatlions in the azimuth
a*(t) .

The law of motion of the space gyrocompass vnder arbitrary ship maneuvers,
determined by Expressions (3.%), was first found in [4] by Isnlinskil in
ghich(ghe)equations of motion of the gyrocompass were inltially taken in the

orm )

The space gyrocompass 1s a high-precision device and requires great accu-
racy in manufacture,

The construction of a gyrocompass would require the guarantee that there
were only smsell values of the moments of the frictional forces 1in the azi-
muthal suspension of the sensitlve element in the gyrocompass, which in due
course 1s achieved in the two-rotor gyrocompass by the use of a gyrosphere
suspended in a fluid, and in other gyrocompasses by the introduction of cor-
responding constructive measures.

In the construction of a space gyroscope, in addition to this, we are
further required to ensure sufficient smallness of the moments of the fric-
tional forces at the supports of the gyroscope housing axes. Thils can be
illustrated by the following example,

In the space gyrocompass constructed by the firm "Anschiitz" [6] the natu-
ral moments of the gyroscope are -5 = 1.510° gm-cm-sec , the gyroscope rotor
welghs 8.8 kg , the dlameter of the gyrosphere is 400 mm . At the equator
when vp= vy =0 the angle &* of the rotation of the gyroscope housing
relative to the gyrosphere will be 8,*= 26°, In correspondence with (3,1)
and (3.3) the stiffness of the spring can be determined by the formula
w —2B U/sind¢*, which for the device being considered amounts to about 500
gm-cm . The presence of dry frictional forces in the supports of the gyro-
scope housing axes gives rise to a dead zone 1in which the restoring moment
of the spring 1s less than the moment of the dry frictional force. From the
data mentioned above 1t follows that if the gyroscope dead =zone 1s not to
exceed one angular minute, it 1s necessary that the moment of the dry fric-
tional force be not larger than 0,15 gm-cm , The total welght of both
gyroscopes comes to about 20 kg , and thus 1t is a very diffilcult englneer-
ing problem to guarantee a very small frictlonal force moment at the gyro-
scope housing axes supports under such a weight.

The deviation ¢* of the gyrocompass from the North direction, determined
by relation (3.3), is called its course or velocity deviation. This devia-
tion is computed and eliminated from the gyrocompass readings.

As shown above, for any ship maneuver law the space gyrocompass has no
other deviation except velocity deviation. This 1s subject to the cholce
of the device parameters in accordance with (3.1), which guarantees the iden-
tical colncidence of the increase in the velocity deviation o¥, induced by
variations of vector V , with the additional deviations of the gyrosphere
arising under the action of the inertial force — mW . As noted, condition
(3.1) 1s difficult to realize and as & result the stiffness x of the spring
in the ordinary two-rotor gyrocompass 1s chosen several times greater than
is called for by (3.1) for a space gyrocompass. Therefore, for a maneuvering
ship, besides the velocity deviations the gyrocompass has additlonal devia-
tions caused by the fact that the gyrosphere displacements under the Inertial
force — mW do not coincide wilth the increase of velocity deviations. These
additional deviations are called ballistic deviatlions.

4, Ballistic deviations of & gyrocompass., Variational equations. FPro-
ceeding to a study of the ballistic deviations of a gyrocompass, we intro-
duce the following varilables:

T, = a — a¥, z, = P, Ty = 7, T, = 8 — &* (41)
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where a* 1s determined by (3.3), while &* satisfies the relation
9B sin (e — 8*) - = % sin 8* cos 8* (4.2)

We note that from (2.2) and (4.1) it follows that x,= a, since according
to (2.1) and (2.2) the relation ¢ = a* holds.

The differential equations satisfled by the varlables x,,...,x, can be
obtained from Equations {1.25) or from Equations (2.6). Limiting ourselves
to first-order terms in x,,...,x, We have the followlng system of differ-

entlal equatlons:
ImV

;—xl—l" Ty — g, Qz; =0
B [ (p-n )+ Keat o= (2 —1)0 g

1 4 B2 .., B _ _ 1 C
— Qo+ oy (P=m )ty & oy 8= gy (m ¥ — E)

25 + Qzy — T_i;(al% +xc0s28%) 7, = 0
Here
B, = 2Bcos (e — &%), Z, = 2Bsin (e — 0%) (4.4)
The linear differential equations (4.3) with variable coefficlents are
variational equatlons.

The solution of Equations (4.3) under zero initial conditions determine
the ballistic deviations of the gyrocompass. Under nonzero initial condi-
tions the natural oscillations of the gyrocompass will also occur in addition
to the ballistic deviations.

As an example, Table 4 presents the values of the functions x, (¢)

(¢ =1,...,4), the solutions of Equations (4.3) as obtained on an electronic
computer (the author thanks A.V.Iaklimenko and L.I.Gusenkova for programing
the computer) under zero initial conditions for the case of a regular circu-
latjon on a course varying in accordince with the law 1 (f)= po— wt, where
Yo = 90°, @ = 0.04745se¢™*, for a ship velocity of » =15 m-sec~!, at the
three latitudes ¢ = 60°, 70° and 80°. The gyrocompass parameters were taken
[1] as follows: x = 140 gm-cm , 2B = 219,000 gm-cm=sec , !P = 6760 gm-cm .
The angle ¢ was determined from the following condition:

[Eil,—q= ImR Ucos@

from which: ¢ = 45.23° when ¢ = 60°, ¢ = €2,01° when ¢ = 70°, ¢ = 76,60°
when g = 80°. Prom Table 4 it is seen that at the higher latitudes the
deviations of the gyrocompass reach significant amounts.

Let us note that the variational equations for a space gyrocompass can be
obtained from Equations (4.3). Indeed, when e = n/2 from (3.1) and (%.2)

we find that
sin 6* = ImV /2B (4.5)

and, consequently, for a space gyrocompass
g, = ImV, H,= 8 = VY 4B? — (ImV)? (4.6)

Here, as is not difficult to see, the following relations hold:
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1y ey Vv P 2, Imy-
sP-rg)tr=mw wr=—E
1

vV E
o (B b onsan ) = “n

In correspondence with (4.6} the right-hand sldes of Equations (4.3}
vanish and the variational eguations for a space gyrocompass will be homo-
geneous differential equations.

Table 4
109 x, 107,
i sec
== B0° @ == T° o w80 @ m= B0 g w702 @ = 809
G 0.0000 0.0000 0.0000 0.0000 0,0000 0.0000
20 1.5%08 3.3008 12.1809 -~ (3, 0008 -3, 0011 —{,0021
4 | 2.0676 | 6.2885 | 23.7681 | —-0.0052 | —0.0033 | —0.0105
60 4.0120 8.6225 33,8786 (3. 0157 —0.0166 —0,0285
80 4, 5392 9.9369 41,1949 -0, 0274 — (3, 0280 -0,0520
100 4.4495 89,8233 43.8920 -0,0217 —0.0271 —0,0588
120 3.7832 8.4944 40.1603 60,0313 0.0162 —0, 008%
140 2. 7110 5.9707 29.6957 0.1589 0,4275 0.15468
160 1,7939 3.1104 15,4607 0.3649 0.3119 0.4378
180 1.2294 0.8333 2.9742 0.6151 0.5390 0.7878
200 1,2606 ~{,2333 -3:5722 0.8444 07477 1.0848
220 1.8197 —{,0232 —3. 7862 0.9813 0.8710 1.2515
240 2.5814 1.0807 0.1769 (.9894 0.8642 1.2020
2680 3.2230 2.4330 5,7664 0.8350 0.7202 {.9473
280 3.4341 3.5743 41.0883 0.5884 0.4675 0.5344
300 3.0994 4.1532 15,0526 0.2065 0.1568 0.0348
320 2.2610 4,0467 17.1944 0.0290 -0}, 1558 ~0, 4732
340 1.0962 | 3.3005 | 17.4682 | —0.1718 | —0.4244 | —0.9243
360 | —0.1368 | 2.1302 | 16.0065 | —0.2011 | —0.6240 | —1.2740
0% 2y § Xp
ta
i @ == §0° @ w= 07 } o = HO° & s B = 70 g e BOR
0 0.0000 {3, 0000 0. 0000 . 0000 0, 0000 0.0000
20 -0, 0324 -0, 0186 —0,0122 —0.0048 -, 0037 -3, 0028
40 -—{3,2532 —{3.1457 «{,1020 ~(, 0480 -, 0143 -0, 0114
60 {3, 8211 ~{}, 4750 —{}, 3358 -0, 0401 —{, 0303 ~—Q,0246
80 -1 ,8892 —4.0714 —0. 7677 | —~0.0847 -0, 0495 -, 0410
100 -3,3334 -1.8590 —1.427 —{,0885 -3, 0687 —0, 068
120 —35,2414 ~3.1108 —2, 3071 —0,1068 -0, 0843 -~0,0736
140 —7.4433 —4,4482 —3.3496 —0.1156 —{(.0932 —0,0833
160 ~3,6313 —35.8397 -k 4445 00,1120 —. 0928 -, 0843
180 -1 . 8454 -7, 1453 53 4637 -3, 0852 —(3,0825 — (3, 0758
200 13,2191 —8§,2281 -—6,3004 —{0, 0870 -0, 0636 —{,05692
220 —44, 1679 ~8, 9881 G, 9270 -3, 0308 —(3, 0389 {3, 0380
240 —~44,3847 —&, 36896 —17.2880 (.0086 (. 0418 —, 0154
260 13,8498 -3, 3826 —7.3858 0.0485 0.0438 0.0055
280 -12.6308 -8, 0005 —7.2205 0.0784 0.0354 0,0227
300 —10,8722 —8,3555 — 8, 8584 0.1008 0.0505 0,0347
320 -8, 7761 -7, 5304 —8,3874 0.1120 0.0578 0.0405
340 -8, 5752 -8, 8462 -—5.7523 0.441 0.057 0.0399
360 —4 4991 ~5,.8253 —3,1809 0.099%4 (., 0400 0.0333
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5. Gyroocompass on & fixed foundation. In the case when the gyrocompass
is installed on a foundation which i1s stationary relative to the Earth,
b = vy = 0, ¢ = const. Here we shall have

V=RUcosgp, a*=0; Q = Using (5.1)
Relation (4.2), from which 6* 1s determined, takes the form
2Bsin (e — 8*) U cos@ = % sin 8* cos 8* (5.2)

In correspondence with (4.3) the variational equations will now be
. Im RU cos .
Ucosg z, + z, ———c_.l—(p Usingzy =10

z, —[-l— (P — mRU?cos?g) + Ucoqu] T, + —‘g% Using z, =

=
— <l_".7'_M — 1) Using (5.3)

=l
=

=1

. P — mRU?cos? ¢ Za .
—Usines + —pramg ~ T mAUwsy % 0

25 + Using 2, — — (E,U cosg + x cos 28%) z, = 0

EBa

where =, and ¥, are determined by Expressions (4.%),

In order to satisfy, at least approximately, the relation (%.5), which is
automatically fulfilled for a space gyrocompass at any law of maneuvering of
the ship and which ensures the.absence of ballistilc deviations in it, the
parameters for ordinary gyrocompasses are usually chosen so that on a fixed

foundation E,= Im RU cosg (5.4)

Condition (5.4) i1s ensured by different construction methods in the dif-
ferent types of gyrocompasses.

When condition (5.4) is fulfilled, the relation
= (P — mRU cos® ¢) + U cosp — P/ mRU cosg (5.5)
will hold.
We now Introduce the new varilables
X,=Ucosqz, X,=z,, X;=1u,, X;=(Ey/E)Ucospz, (5.6)
Denoting
u? =IPE;*(x cos 26* + Im RU? cos? ¢) (5.7
and setting
P—mRU%cos?’¢ ~ P ~mg (5.8)
we can reduce the variational equations (5.3) to the form

X, + X, —QX,=0, —QX,+vX;+ X, =0
X, —v2X, + QX, =0, QX, - Xy — ¥ X, = (5.9)
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We note that for & space gyrocompass relation (5.2) takes the form

2B cos 6* U cos ¢ —=(4B%/ImR)sin 8*cos 6* (5.10)
Hence 1t follows that
2B sin 8* = ImR U cos ¢ (5.11)

Here, from (3.1) and (5.11) we find that
% €08 26* = (ImR)™! [4B? — 2 (ImR U cosp)?] (5.12)
Hav substituted into (5.7) Expression (5.12) which we have found for

x cos 28%, and having taken into account that in accordance with (5.11) the
relation

S, = 2B cos 6* = V 4B2—(ImR U cosg)?
holds when ¢ = n/2 , we find that in a space gyrocompass
pe = ~? (5.13)

The characteristic equation of the system of differential equations (5.9)
has the form

M (VAP 200A2 Ly — (V- pt) Q2+ Q40 (5.14)
The roots of Equation (5.14%) will be purely imaginary. Let us denote them

Ay b = £ oy, Ay Ay == 4 0, (5.15)
When u =v , 1l.e. for a space gyrocompass
0, =v— Q, 0, =v+ Q (5.16)

which 1s in accord with the results (3.4) derived above,

In the case when QU > v, which occurs in the ordinary gyrocompass, for
w, and w, , we can get the approximate expressions

~ u2 -+ 3v2 —_ _ 3pz - v 2|y ~
0)1~|:1_m92] ~\, (D2~[1—+—Wz_vz)g]p~p' (5.17)

Let us go on to the construction of the solution of the system of differ-
entlal equations (5.9). For greater generality let us consider the system
of differential equations

2
Xl.‘—‘V2X2'}‘ QX4:y1(t)v QX?J_X"_J‘:)_ZX“:y"(t)

. . (5.18)
X, +X2.—QX3:?/2(£)’ — QX, 4 v* X, + X, =y, (1)
Here the functions y,(¢) (f = 1,...,4) are defined as the external
forces applied to the system. When y,(¢) = O (/ =1,...,4) the system of
differential equations (5.18) colncldes with the system of differentlal equa-
tions (5.9) which describe the natural oscillations of the gyrocompass.

In the original equations (1.25) and (2.6) the generalized external for-
ces applied to the system were denoted by M*, M*, M,* and M, *
respectively. As 1s not difficult to verify, the functions y,(t) (J=1,..,4)
occurring in Equations (5.18) are related to the generallzed external forces
by the dependencies
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1 _ 1 M

nO=mg M 0= garese Mv* (5.19)
1 1 M

ys(t) = — 5 My*, V) = g M-*

Here My-* 1s the moment of the external forces with respect to the
y*-axis, which, according to Table 1, satisffes the relation

M, *cosP + M, *sinp = M* (5.20)
By introducing the matrices

D —«~ 0 Q X1 Y1 (t)
1 D —Qq 0 X, ya (t)
D = 2 = =
IOy=| o o p Bl X=lgl yO= o 621
—Q 0 v D X, ya (t)
where D = d/dt we replace the system of scalar differential equations (5.18)
by the matrix equation f(D) X — y (t) (5_22)
By (5.15) the determinant of the matrix p(p) 1is written thus
A (D) = (D? + o, (D? 4+ o,?) (5.23)

It pm(p) denotes the adjoint matrix of matrix y(p) , we can represent
the general solution of the system of equations (5.18) in the form

4 (5.24)
X;(t) = — %{Z Re [iF j; (i05)] X (0) cos @, —
k=1

4 4
— ) Im [iFj (i0,)] Xk (0) sin mlt} + ei,{ ) Re [iFy (i0g)] X (0) cos @,t —
k=1

k=1
4 t 4
— kZ Im [iFj (iwg)] X (0) sin mzt}—l— S AN Np(t—r) Y, (v)dv G=1,...,4)
k=1 0 k=1

where
e = s (02 — ©,2) (s=1,2) (5.25)

and the ¥,,(¢t) are the elements of the weighting function matrix
N (O =N )]
for the system of equations (5.18). The functions ¥,, (¢} have the form
Ny () = —~Re [iFs (i) ] +--Re [iFu (io) ] G, k=t,...,4) (5.26)

We use iFj (iog) (s=1, 2) to denote the elements of the matrix

i [F (D)]Dz'iu)s1
which 1s
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An®  idn® A 14,
iAq® Agp® iAgs® Agy®

iF (ia,) = Ag® iAg,® Ap®  i4,,® (5.27)
iA,® Ap® iAu'® A®
where (5.28)
Au(S) — '(083 _ (pz + Qz) O, Alz(S) - _ vzmsz — Q22 + pzvz
An(S) = @2 + Q2 p42/\,2 — p‘2' A22(S) — Au(S)
Ay® = — (Q+ 2/ 0, Ag® = Qo2 + Q2 — Q
A 9 = — Qo2— Qv+ Q2 A, = 20vie,
AIS(S) = A42m, Azs(s) = A41(S)v A14(s) = A32(§)1 A24(3) = A:n(s)
A33(S) — (053 . (v2 + Qz) O, A34(S) — wszuz/ v:— Q2 P'Z
A43(S) — v2ms2 + Q242 V‘, A44(S) — Aaa(S)

The transformation of Equations (5.18) to normal coordinates 1s of inter-
est. To determine the normal coordinates it is first necessary to represent
the matrix F (io,) = [F (D)]D-iw, as the product of a column matrix and a row

matrix
Flio) =K (ioy) I (iv,) (s=1,2) (5.29)

As can be seen from (5.27) the indicated matrices can be taken as

s Ky :
K (i) = | 1|, I(io) =1, ... 1] (5.30)
Ky
where
1 O + v: — QF
K, = R Ay= 1 ——ZW—
—w? v Q2 — 24 V2~ Q2
Ky = =200, ’ Ke=1 4Qa,
L= 20— o} @4 9l Iy = 2 (—of + QF +pf)
I3 = 4iQv%,, [y = 2Q (02 + u2 — QF) (5.31)

The original coordinates x,,...,X, will be related to the normal coordi-
nates £, ,n,,€,,n, by the following relations:

11
XY= 4+ k

@2 v Q2 w2 + V2 — Q2
Ay = 4vEiay T Vi, T2
— 2 Ve Q2 g vE - Q8 )
Xy = ——fgv b+~ ow 2 (-32)
— % 4 v Q2 — W - v — Q2
Xy = 200, ™k 4Qw, Me

Also, 1t 1s not difficult to get from (5.32) that
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2 (@2 — V2 — Q%) X, + 4QviX,

§1 = 02 — o
2 (— @® 4+ v — Q) v, X, + 2 (— w2 — v2 4 Q%) Qo, X,
h = (01 — 0g?) (V2 — 2)
2(— o v+ @9 X, — 402X,
&= o — 0
2 ()2 — v Q) v, X, + 2 (0?4 v — Q% Qu.X,
My = (02 — 02?) (V2 — Q) (5.33)

The differential equations satisfied by the normal coordinates will be
dfy 2 (— o +p* 4+ Q9 4Qv2

dt M= 0 — @f v )+ Tof — o 0]
298 (— oyt — 2 4 pY) 20 (0 + p2 — 99
2 + @, = oy (;)22 o) y (1) + o, 2&)22 — o) ¥ (0
dg 2 {wg2 — p? — Q9 4Qv2
“731':2 — @y = :)zz — o 1 () — Tof — o U3 (0)
dn, 293 (0 + QF — p¥) 2Q (0t + p? — Q9

+ 0583 = @ (022 — 01d) ¥y (1) — 0 (02 — 0 y, (1) (5.34)

Note that ehen the values {5.16), which give «, and w, for a space
gyrocompass, are substltuted into expressions (5 33) they t;ake on the form

b= X+ vX,, m = vX; + X § = X; — VX, Nz = vX, — X, (5.35)
Here g,,n, (¢ = 1,2) w11l satisfy the differential equations which can

be obtained from {s. 32&) if for w, and w,; we substitute the values (5 16}.
These equations will be

B —(v— Q) =y 0 + vy (0, B — v+ Q=9 () — vy (1)
m A (v — Q) & = vy () + ¥ (8), e O+ DE=vg ) —y @ (5.36)

6. Aotion of random forces on an undamped gyrocompass. Under zero ini-~
tial conditlons the law of motion of a gyrocompass under the action of ran-

dom forces will be, according to (5.24),
4t

X0 =3 (Na(t — 9y, (v) dv G=1,....4 6.1)

k=10
where the external forces y,(¢t) are defined by Expressions (5.19). Let
Mx:—Mv’ _Mu =0 (6.2)
and let y,* be some stationary random process with zero mean, Here, accord-
ing to (5'19)) 1 . 6 3
— * .
7,0=0 (p=1,2,3), yO=gM (6.3)

Expressions (6.1) now take on the form

X;(0) = (N (t — 9y (0) dr (=1, 4 (6.4)

According to (5.26) the elements of the welghting function matrix ¥, (z)
{7 = 1,...,4) occurring in {6.4) can be put in the form
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Ny, (t) = ay48in 04t — by, 5in 4, Ny (1) = — a5, €05 0, + byy COS 0,1 (6.9)
Ngy () = ag48in 0,2 — by, sin oy, Ny (t) = — agc08,0,F + by, COS gt
where
1 4.a 1 .
ajg = ZA.’M o b= N AP (G=1....4% (6.6)
while Aj;” and g (=1,....45s=12) are determined from Expressions

(5.28) and (5.25).
The mathematical expectations of the random process x,(t) (f = 1,...,4)

equal zero.

The variances of X,(z) (4 = 1,...,4) are determined by
ot

D)=\ \Nut =Nyt —0)Ku(x—0)dvds  G=1....,8 (6.7)
~ o

where K4‘(T — 0) 1is the correlatilon function of the stationary random pro-
cess y,(¢) .

For the Gaussian random process of the white nolse type

Ky (v —0) = Gb (v — 0) (6.8)
where &(t — ¢) 1s the Dirac delta-function, By (6.5) Expression (6.7)
takes the form (6.9)
a.a..{-. b-2 a;b: . .
Dj(t)=G{ ’42 J‘t—@’f_’:}ﬂsm(ml—mz)t—{— G=1,...,4

2 2 . b
+ (— 1y [Tag{ sin 2w,¢ + %:-; sin 2@yt — m—f’%; sin (0, + 0,) ¢ ]}

Expressions (6.9) for the variances of the angles determining the errors
of the gyrocompass contain terms which increase linearly with time. For suf-
ficiently large values of ¢t these terms can attain considerable magnitudes
and will by themselves determine the amount of the varlances.

We note that the time variation law of- the signal variance at the output
of the undamped system was studied for a second-order system by Sveshnlkov

£71.

The increase with time of the variance arises because of the absence of
damping in the gyrocompass being considered here. The indicated circumstance
is the reason for limiting the time interval during which a damping device
1s switched off.
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