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In the p?esent paper we study the motion of a two-rotor gyrocompass. We con- 
sider the natural oscillations of the gyrocompass and its ballistic devla- 
tions which occur during the ship’s maneuvers. We also study the motion of 
an undamped gyrocompass under the action of random forces. 

1. Bquatloxu of motion of a two-rotor gyrooomprrr rrlrtivr to a goograph- 
io rofrrrnor rprtom. A two-rotor gyrocompass [1,2]consists of two gyroscopes 

enclosed In a sphere called the gyrosphere whid~ Is Immersed in a liquid (Fig.1) 

The gyroscope rotor axes are horizontal. The gyroscope housing axes are loca- 

ted vertically and may be rotated relative to the gyrosphere on bearings 

fixed on the inner surface of the gyrosphere. The housing axes of both gyro- 

scopes are interconnected by a four-linkage mechanism - an antlparallelogram. 

Therefore, the rotations of both gyroscopes about their housing axes take 

place in opposite directions by angles which are equal In magnitude. The 

center link of the antiparallelogram is attached to the inner surface of the 

gyrosphere by two springs which try to keep the gyroscope housings In the’ 

Fig. 1 Fig. 2 
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Positlons indicated In Fig.1. The coordinate axes X, I/, 8 (Fig.1 and 2) 

are rigidly fixed to the gyrosphere. The origin 0 coincides with the geo- 

metric center of the gyrosphere. The xs-plane in which the rotation axes of 

the gyroscopes are located Is called the equatorial plane of the gyrosphere. 

The y-axis Is directed upward normal to this plane. The direction of the 

z-axis is parallel with the bisector of the angle formed by the gyroscope 

rotation axes. The x-axis is perpendicular to the y- and z-axes and,together 

with them, forms a right-handed orthogonal trlhedron xy.s . 

The center of gravity of the gyrosphere together with all of the elements 

placed in it, is located on the F-axis below the geometric center of the 

gyrosphere. 

The location of the rotation axes of gyroscopes 1 and 2 relative to 

the gyrosphere can be defined by the angle 6 of rotation of gyroscope 1 

around Its housing axis (Flg.2). With each of gyroscopes 1 ‘and 2 is 

associated the coordinate axes X, ,y, ,zi ‘\f, =1,2) 

with origin at the center of gravity of the 

corresponding gyroscope. The zI-axls Is direc- 

ted along the rotation axis of the gyroscope; 

the y, -axis, upward along the gyroscope housing 

axis ; the direction of the x,-axis is perpen- 

dicular to the y,- and al-axes, and is chosen 

such that the trlhedron x,~/,z, is right-handed. 

We note that the gyroscope hQUSing axes F, and 

I/~ and the y-axis of the gyrozphere are paral- 

lel. In Fig.1 s denotes the angle which the 

rotation axis =I of gyroscope 1 makes with 

Fig. 3 the a-axis of the gyrosphere at the origin when 

the springs are situated along the z-axis of 

the gyrosphere. The coordinate axes X! , y, , 8, (t = 1,2) are the Resal axes 

of gyroscopes 1 and 2 , respectively. 

As the orientation (reference) axes we choose the coordinate system 5~5 

whose origin 0 coincides with the geometric center of the gyrosphere while 

the axes !,n,C, are oriented In the following manner: the C-axis IS direc- 

ted along the radius of the Earth, while the 5- and n-axes are located in 

the tangent plane to the Earth’s surface and directed thus: the T-axis to 

the East and the n-axis to the North. 

The position of the gyrosphere 

Table 1 relative to the coordinate system 

\ E L 
5~16 Is determined by the Euler 

7l 
angles c,@,y (Flg.3) of which a 

2* -cos?. -since 0 is the angle of rotation around 

Y* sin a sin p - cos r sin p cos p the C-axis, B is the angle of 

z - sin a cos 3 cos u ros p sin p rotation around the x*-axis lying 
in the horizontal plane (the angu- 
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lar velocity vector 8’ is directed along the negative direction of the x*- 

axis), while v Is the angle of rotatlon~of the gyrosphert around Its s-axis. 

Table 1 presents the values of the cosines of the angles between the axes 

x* ,c** I Lx+ is the nodal line, y* Is the transverse axis) and the axes 

51rl>c * 

Since the dependencies 

xc = x*0 cos 7 + y*e sin 7, y" = - x*O sin 7 + yQo cos 7 
(1.1) 

hold between the unit vectors 

cosines of the angles between 

the values shown in Table 2. 

of the coordinate axes n,y and x*,#, the 

the axes x,I/,~ and the axes ~,,n,c will have 

Table 2 

E I n I r. 

x - cos 2 co.9 r + sin a sin R sin 7 - sin a co9 7 - cos a sin p sin 7 co9 p sin r 

Y cos a sin 7 + sin a sin p cos 7 sin a sin r - cos a sin fi cos 7 co.5 p co9 7 
z - sin 31 cos R cos a cos p sin R 

The values of the cosines of the angles between the gyrosphere axes x,s 

and the Resal axes xl, Z, (t = 1,2) of the gyroscopes (Fig.2) are shown in 

Table 3. 

Table 3 
Let us now compute the 

Instantaneous angular 

velocity of the gyrosphere 

coordinate trlhedron $nC (the reference system), geographically oriented 

as indicated ‘above, because of the Earth’s rotation and of the ship’s motion 

on the Earth’s surface, has & instantaneous angular Velocity U whose pro- 

jections on the axes 5, q, C will be 

Here u Is the diurnal angular velocity of the Earth, cp is the latitude 

of the ship’s position, r~ and VIV are the East and North components of the 

ship’s veioclty, I) Is the Earth’s radius. 

The projections of the Instantaneous angular velocity of the gyrosphere 

on its axes X, y, s are denoted by p, q, r, respectively. They will be 

p = a’ cos p sin r - p' cOs~+ul(-COS~cOs~+si~asin~sin~)+ 

+ uz (- sina cos r - COSa sin 8 sin 7) + Us COs p sin T 

g = u’ ccs fl cos 7 + p’ sin r + u1 (COSa sin r + sin a sin B COS r) + 

+ ua (sina sin 7 - COSa sin fi cos 7) + Us COS #I COS 7 

r 3 a'sin 6 + r' - u,sina Cosb + U2COSa cosp + u,sinb (1.3) 



The projections of the instantaneous angular velocities of each of the 

gyroscopes on their Msal axes xi, gI, zi are denoted by pi, pi, ri (5=1,2), 

respectively, They will be 

p1 = p cos (t3 - 6) + r sin (8 - h), q1 = q -t- B 

- p sin (8 - 6) + r COS (E - 8) + qr, 
(14 

r-1 = 

Pz =-= p GOS (23 - 6) - r sin (e - 6), qg=q-lj 

r2 =psin (6-Q) + r cos (s-Q)+Cpz 

where 1~~’ and eps* are the angular velocities of the natural rotations of 

gyroscopes 1 and 2 s respectively. The angles a, 8, y, 8, cp, and opt 

are taken as the generalized coordinates of the ayst;em under consideration. 

The equations of motion of the system can be set up with the aid of the 

second method of Lagrange. Here we shall litit ourselves to a study of the 

precession motion of the system and we shall neglect its nutational oscil- 

lations I The latter is equivalent to the assumption that the klnet3.c mament 

of the whole system equals the geometric sum of the kinetic moments of the 

gyroscopes, while the kinetic moments of each gyroscope is directed along 

its natural rotation axis. 

Gi zz C,r$@ fi = 1, 2) (=I 

Under these assumptions the kinetic energy of the system in its motion 

with respect to the support point 0 will be determined by the approximate 

expression 
(1.6) 

Here C, denotes the moment of inert33 of the gyroscope rotor with respect 

to the axis of its natural rotation. 

The drag force moment and the active rotation moment operate around the 

natural rotation axes of the gyroscopes. By assuming that the total moment 

of the forces with respect to the axis of natural rotation of each gyroscope 
QQpi SE O(i=1, 2) v and by taking Into account that according to (1.6), (1.4) 

and (1.3) 
(i c 1, 2) CI+7) 

from the Lagrange ecp_iations of the sedond kind we obtain the relations 

c,ri = const (i E 1, 2) (f.f9 

The natural moments of gyroscopes 1 and 2 are denoted 

&I-, = & C& = B, fl.3) 

;Ln accordance with (1.4), the quantities ri (5 = 1,2) are mainly deter- 

mined by the values of the angular velocities ‘p!* of the natural rotations 

of the gyroscopes since the latter are very large - of the order of 2000se@. 

For Q* = pPa* the difference F2 - ‘tl -ZZYZ 2p Sill (e - 8i is negligibly small 

In comparison with r, and f2 , merefore, according to (1.4), we can 

assume that rlw rz, whence follows the equality of the natural. moments of 

both gyroscopes B -Bp=B 1- 
(IJO) 
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Let us now pass on to setting up the bagrange equations for the noncyclic 

coordinates a, 8, y, 6 . In accordance with (1.3), (1.4) and (1.6), the 

partial derivatives of the kinetic energy T with respect to the generalized 

velocities are 

i?T 
z= 2B cos (a - 6) sin p, g = 0, $ = 2B cos (a - d), $ = 0 (1.11) 

The partial derivatives of the kinetic energy T with resect to the gene- 
ralized coordinates have the form (1.12) 

8T/&c=2B(- u1 cos a cos f3 - u2 sin u Cos P) COS (8 - 6) 

dT / ap = 2B (a’ cos p + u1 sin cc sin p - 

- u2 cos a sin p + u3 cos p) cos (e - B), 13T/ay = 0 

dT/S = 2B (u’sin p + r’ - u1 sin a cos p + u, cosu cosp f us sin p) sin (a - 6) 

To compute the kinetic energy (1.6) of the system, only the rotation of 

the coordinate trihedron <nC around the origin was taken into account but 

the motion of the origin was not considered. Therefore, to the number of 

external forces applied to the system there should be added the force of 

inertia - mW applied at the c-enter of gravity of the gyrosphere, where m 

is the mass of the gyrosphere together with all of the elements enclosed 

inside it, and W is the acceleration of the origin of the coordinate axes 

Sr16 > i.e. the acceleration of the point of support of the gyrocompass, The 

instantaneous velocity of the point of support of the gyrocompass Is 

v = (RU cos cp + 21~) 5” + 2.‘Nq” + V&” (1.13) 

Here 4 denotes the vertical component of the ship’s velocity. We usu- 

ally take vr. = 0. However, in certain cases, for example, in the case of 

ship motion on waves, it is necessary to take Into account that VL = R’, 

where by R is meant the distance from the point of support of the gyrocom- 

pass to the Earth’s center. 

By taking into account that cp’= v,/R , In correspondence with (1.13) the 

components W, , W,, W, of the acceleration of the point of support of the 

gyrocompass along the axes {,n,C, of the cocrdlnate trlhedron CnC rotating 

with angular velocity u , can be represented by 

W,= vE -2vNUsin~-v~~cp$-2V~UCOS~fv~ 

W, = vN’ + RVsinrp coscp j- 2vEUsin cp +‘$m Cp -i-y 

W,= v~-2vEUcoscp-RU2cos2~-v~~-v~2 (1.14) 

In case v< G 0, Expressions (1.14) take the form 

wl= v~.-2rNusin(p-_wUJ!-$ 

W, = vN’ + RU2sincp coscp + 2vEUsincp +$mq, w3=- ; (1.15) 
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V = v(RU cos cp + Q2 + qv2 (1.16) 

The resultant of the Earth's gravitational force P and of the Inertial 

force - mW , is applied at the center of gravity .of the gyrosphere and can 

be represented 
N = - rnW,EO - mIV,qc - (P + VW,) cc (1.17) 

The generalized forces along the coordinates c, 8, y, corresponding to 

the resultant force N are the partial derivatives with respect to these 

coordinates of the function ll, having the form [3] 

n, = - mW,& - mW,qc - (P + VW,) CC (1.18) 

where 5,) roof C, are the coordinates. of the center of gravity of the gyro- 

sphere. By taking Into account that the center of gravity of the gyrosphere 

lies on the v-axis at a distance 2 from the origin, from Table, 2 h’e can 

determine the values of 5,, qe, 6, , 

Substituting these values into Expression (1.18) we bring It tc the form 

II, = lm W, (cos a sin r + sin a sin p cos r) + 

+ lm W, (sin cL sin 7 - cos 3 sin p cos 7) + 1 (P f mW,) cos p cos y (1.19) 

The potential energy of the springs which connect the center link of the 

antlparallelogram to the shell of the gyrosphere has the form 

- l-I, = I12c1 (AL)2 (1.20) 

where cL Is the stiffness and AL Is the deformation of the spring. From 

Fig.4 we see that 

(1.21) 

where LO Is the natural length of the spring, L -& = h Is the Initial 

stretch of the spring. 

Having substituted the value of AL Into 

Expression (1.20) we get the followine. expres- 

sion for the potential energy of the spring: 

- f12=+cI(h2 +thp2sin26 -I...) (1.22) 

where terms containing sin 6 to higher than 

the fourth degree are not written down and are 

discarded In the subsequent discussion. By 

denoting I-I = n, $- rip (1.23) 

Fig. 4 

we get for the generalized forces, corresponding 

to the coordinates a,s,y,6, the following 

expressions: 
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Qa = al-I I aa = lm W, (- Sin u sin 7 + cos a sin p Cos y) + 

+ lm W, (co9 a sin y + sin a Sin p Cos y) 

QP = XI / @ = lm W, sin a cos p cos y - 
- lm W, cos a co9 p cos 7 - 1 (P + mW,) sin p cos y 

Q, = 8l-I / &y = Zm WI (cos a cos 7 - sin a sin p sin y) i- 
+ lm W, (sin a cos y -I- cos cc sin p sin y) - 2 (P + mW,) Co.9 p sin 7 

Qa = an I aa = -x sin 6 cos 6 (x = L-‘c,llp’) (1.24) 

Taking (l.ll), (1.12) and (1.24) Into account, we obtain the equatione of 

motion of the compass with respect to the geographically-oriented axes <,n,c 

(1.25) 
[2B cos (e - 6)sin$]‘+ 2B(u,coSaCoSP + 

+ up sin a cos 3) cos (8 - 6) = lm W, (- sin a sin y + 

+ cos a sin p co9 y) + lm W, (co9 a sin y + sin a sin p co9 y) + MC* 

2B [a’ cos [3 + u1 sin a sin p - u, cos a sin p -I- 

+u,CO~~]COS(E-8)= - lm W, Sin a CoS p Cos 7 + 

+ lm W, cos a co9 f3 cos 7 + 1 (P + mW,) sin ? cos y + Mp* 

[2B cos (e - 6)l’ = lm W, (cos a cos 7 - sin a sin p sin y) + 

+ lm W, (sin a cos y + cos u sin f3 sin y) - I (P + mW,) Cos p sin y + AZ,* 

28 (a’ sin p + y’ - u1 sin a co9 p + u9 co3 a cos p + 

+ u, sin p) sin (e - 6) = x sin b cos 6 - Mv,* 

Here the dote over a letter or over a bracket eign.Wy the time deriva- 

tive; Y, and u, (t = 1,2,3) are determlned by Expressions (1.14)and(1.2); 

M,*, MX.* , MI*, Mv,* d enote the momenta relative to the axes of all the 

remaining forces not accounted for ln (1.24) which may be applied to the 

system. 

2. tqwtiona of motion of l -0-8 rrl&tlvo to b nirronoo rmtem 
8ttWhM t0 th0 dirOOtlOXh Of &b8OlUt@ WlOOl* Of tIW BhQ. The motion of 

a gyroscoplc device relative to a reference system attached to the direction 

of absolute velocity of the ehlp, was first studied ln the worke of Iehlln- 

ski1 [4 and 51. Let {,,Q,C be a coordinate system oriented suoh that one 

of the horizontal axea (the <c-axle) 18 directed along the vector V of 

abeolute velocity of the ship’(lt la aaaumed that the vertical component of 

the ship’8 velocity UC G 0). Ae .ln Section 1, the C-axle la directed up- 

ward along the Earth’s radius. 

The coordinate axe8 &, and no (Plg.5) are turned through an angle a 
wlth respect to the axe8 5 and n determined by the relations 

Sin (3 -= V,v I V cosu = (RL’coscp + @IV (‘2.1) 
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The position of the gyrosphere relative to 

the reference system 5,n,,6 is determined by 

the Euler angles ui,g,y, of which 

al ===a--CT (2.2) 

% 
while the angles g and y are the same as 

those introduced in Section.1. 

The projections of the instantaneous angu- 

lar velocity of the trlhedron taqoC onto the 

axes 509 70, c will be 

P&. 5 z&1* = 0, u2’ = VI R, us0 = Q (2.31 

Q = Usincp + (vE/R)mcp to’ (2.4) 

The projections of the acceleration of the point of support 

compass onto the axes so J no J c are 

WIO = V, W,O = Vf2, ‘w; = -P/R 

SubstitUtUg into Equations (1..25) the quantities (2.3) and 

of the gyro- 

(2.5) 

(2.5) for U, 
and W, (2 = 1,2,3) we get a system of equations describing the motion of 

the gyrocompass relative to the axes E&, nor < 

[2B co9 (E - 6) sin ~1‘ + 2B cos (e - 6) (VI R) sin al cos f3 = 

Zm V’ (- sin a, sin 7 + cos al sin p CoS r) + 

_t=lm VQ (cos u1 sin r + sin a1 sin /3 Co9 r) + Mr.” 

2R cos (8 - 8) [al’ co9 p -(V/R)cosa,sinpi- QCOS~] = 

=- In T” sin aI cp p co9 r + Im VQ Co9 ax COS p COS y -I- 

i- 1 (P - mV2/R) sin p cos y + Al,** 

[z.z? cos (8 - 6)1’ = Im v’ (co9 a, cos 7 - sin a, sin p sin y) -k 

-+ tm VSZ (sin dl cos r + cos ul sin Q sin r> - 

- I (P - mV2 / R) CC% p sin r + M,” 

2Bsin(e-_)[cL1’sinP+~‘+(V/R)c~~~~~o~P+ 
+ QsinPJ =xsin8Cos6--MIM,* (2.6) 

The equations of motion of a gyrocompass relative to axes attached to the 
direction of absolute velocity of the ship, obtained by Ishlinskii in ES] 
with the use of the theorem on kinetic moments, have the following form in 
our notation: 

2Bcosf~ - 6) [- (V/R) (ffn a1 sin 7 - co3 aI sin p cos ++ (a’1 + Q) cos /3 co.9 1- B’ sinrl= 

= urn V’sin al cos p - lrn VB cosai cos J3 - 1 (P - tnP/Rf sin B - MS* 

2B CDS (e - 8) ((V/R) (sin 011 co3 r + cds 41 sin 0 sin r)--_(a’l+ 0) COs B sin r + B’ COsYl=My* 

[ZBcos (c - S)J’= ZmV’(cos al cos 7 - sin al sin $ sinr) + lmVS2 (sin al c0S r +- 

-I- ~o~a~s~~~ sin 7)- f (P - mv2lR) cosfi sjnr + M,* 

2B sin@ -6) [(V/R (cm al cos f3 --I- (a I + S2) sin fi -f- 7’ l= x Sin 8 Cos 8 - NV,* (2.7) 
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We can show that the systems of differential equations (2.6) and (2.7) 
can be obtained one from the other by means of corresponding transformations. 
Indeed, by multiplying the first equation in system (2.7) by cos B sin y 9 
the second by cos B cosy , and the third by sing, and by adding these equa- 
tions, we get first equation of system (2.6). By multiplying the first equa- 
tion of system (2.7) by -cosv and the second by 
equations, 

-slnv, and by adding these 
we get the second equation of system (2.6). The third and fourth 

equations of systems (2.6) and (2.7) are identical. Thus, the systems of 
differential equations (2.6) and (2.7) are equivalent. 

3. &roe gyrooomprnr I By a specific choice of parameters the gyrosphere 

of a two-rotor compass turns out to be stabilized in space and can be used 

as a sensitive element of a space gyrocompass or of a gyro-horizon compass. 

The equations of motion of a space gyro- 

compass can be obtained from the Equations 

(1.25) derived above If we take it that In 

the device (Fig.6) the rotor axes of both 

gyroscopes, in the case when the rotors are 

not rotating, are positioned along the X- 

axis of the gyrosphere, to which corresponds 

6 = 77/2 ) while the stiffness of the spring 

mutually connecting the gyroscope housing 

Is chosen as follcws: 

x = 4B2/lmR (3-i) 

Fig. 6 Under the indicated conditions, for any 

law of motion of the ship, Equations (1.25) 

have the following particular solution 

a0 = a*, p” = 0, To = 0, 6” = 6* (3.2) 
where c* and b” are determined from the relations 

sina* = z’N JV, cosa* = (RUcoscp + vE)lV, 2B sin 6* = Zm V (3.3) 

The equations of small oscillations relative to the position defined by 
relations (3.2) have the solution 

(3.4) 

‘WI (t) = WI (0) cxp (4 s [v-Q@)]ds), ZU~ (t) = w2 (0) exp (4 s [v+Q(r)ldr) 

0 0 

Here 

where 

V 
WI = _71 (2 - u*) + VT -k i V3 + /m R -s-- (6--6’)] 

V (3.5) 
wz = 3 (a-a*)-v7 + i v3- 

v = l/g/R, - E = 1/4B2-(lmV).L (3.6) 

The quantity n Is determined from Expression (2.4) which can be reduced 
to the form 

Q= us+ a*‘= V-2 [(RU coscp+ v,)Wz-~NWll 

From (3.4) and (3.5) it follows that if at the initial Instant t = 0 

CL (0) = u* (O), p (0) = -f (0) = 0, 6 (0) = d* (0) (3.7) 



1000 1a.N. Roltenberg 

then for any law of maneuvering of the ssip the generalized coordinates 

a, 8, y and 6 may be varied In the following manner: 

40 = a* (0, p (4 = 0, y(t) = 0, 6 (t) = 6* (t) (3.8) 
i.e. the only deviations of the device will be deviations in the azimuth 

a*(t) . 
The law of motion of the space gyrocompass rnder arbitrary ship maneuvers, 

determined by Expressions (3.4), was first found in [4] by Isnllnskii in 
which the equations of motion of the gyrocompass were initially taken in the 
form (2.7). 

The space gyrocompass Is a high-precision device and requires great accu- 
racy In manufacture, 

The construction of a gyrocompass would require the guarantee that there 
were only smell values of the moments of the frictional forces in the azl- 
muthal suspension of the sensitive element In the gyrocompass, which in due 
course is achieved in the two-rotor gyrocompass by the use of a gyrosphere 
suspended in a fluid, and in other gyrocompasses by the introduction of cor- 
responding constructive measures. 

In the construction of a space gyroscope, in addition to this, we are 
further required to ensure sufficient smallness of the moments of the fric- 
tional forces at the supports of the gyroscope housing axes. This can be 
Illustrated by the following example. 

In the space gyrocompass constructed by the firm “Anschctz” E63 the natu- 
ral moments of the gyroscope are .B = 1.5*1@ gm-cm-set , the gyroscope rotor 
weighs 8.8 kg , At the equator 
when uE= VN= 0 

the diameter of the gyrosphere is 400 mm . 
the angle b* of the rotation of the gyroscope housing 

relative to the gyrosphere will be b* = 26’. In correspondence with(3.1) 
and (3.3) the stiffness of the spring’can be determined by the formula 
x,=2B Utsi&*,whlch for the device being considered amounts to about 500 
gm-cm . The presence of dry frictional forces ln the supports of the gyro- 
scope housing axes gives rise to a dead zone In which the restoring moment 
of the spring Is less than the moment of the dry frictional force. From the 
data mentioned above It follows that If the gyroscope dead zone is not to 
exceed one angular minute, It is necessary that the moment of the dry fric- 
tional force be not larger than 0.15 gm-cm . The total weight of both 
gyroscopes comes to about 20 kg , and thus It is a very difficult engineer- 
ing problem to guarantee a very small frictional force moment at the gyro- 
scope housing axes supports under such a weight. 

The deviation Q* of the gyrocompass from the North direction, determined 
by relation (3.3), Is called Its course or velocity deviation. This devia- 
tion Is computed and eliminated from the gyrocompass readings. 

As shown above, for any ship maneuver law ,the space gyrocompass has no 
other deviation except velocity deviation. This la subject to the choice 
of the device parameters ln accordance with (3.1), which guarantees the lden- 
tlcal coincidence of the increase ln the velocity deviation a*, Induced by 
variations of vector V , with the additional deviations of the gyrosphere 
arlslng under the action of the Inertial force - mW . As noted, condition 
(3.1) Is difficult to realize and as a result the stiffness n of the spring 
In the ordinary two-rotor gyrocompass Is chosen several times greater than 
Is called for by (3.1) for a space gyrocompass, Therefore, for a maneuvering 
ship, besides the velocity deviations the gyrocompass has additional devla- 
tlons caused by the fact that the gyrosphere displacements under the inertial 
force - mW do not coincide with the Increase of velocity deviations. These 
additional deviations are called ballistic deviations. 

4. BBlllrtlo drvlatlonr of 1 ~ooomparr. vartition8l l quatlona. fro- 

ceedlng to a study of the ballistic deviations of a gyrocompass, we lntro- 

duce the following variables: 

Z1 = a - a*, x2 = BY x3 = r, x4 = 6 - P (4.1) 



where a* Is determined by (3.3), while b* satisfies the relation 

s sin (8 - 8*) g = x sin 6* COS 6* (4.2) 

We note that from (2.2) and (4.1) It follows that x1= a, since according 

to (2.1) and (2.2) the relation o = a* holds. 

The differential equations satisfied by the variables x~,...,x~ can be 

obtained from Equations (1.25) or from Equations (2.6). Limiting ourselves 

to first-order terms In x,,...,x4 we have the following system of differ- 

ential equations: 

-_Qxs=O 

Here 

xs’f Qx2-+-((E,; +xcos26* x* =o 
1 

E, = 2B cos (E - a*), E2 = 2Bsin (e - 6*) (4.4) 

The linear differential equations (4.3) with variable coefficients are 

variational equations. 

The solution of Equations (4.3) under zero Initial conditions determine 

the ballistic deviations of the gyrocompass. Under nonzero initial condl- 

tlons the natural oscillations of the gyrocompass will also occur in addition 

to the ballistic deviations. 

As an example, Table 4 presents the values of the functions x1(t) 
it = I,..., 4), the solutions of Equations (4.3) as obtained on an electronic 
computer (the author thanks A.V.Iaklmenko and L.I.Gusenkova for programing 
the computer) under'zero Initial conditions for the case of a regular clrcu- 
lat$on on a course vary+ in accordance with the law $(t)=qo- ot, where 
90 = 90", 0 = O.O1745sec- for a ship velocity of u = 15 m-set-I, at the 
three latltudes rp = 60”, fO” and 80". The gyrocompass parameters were taken 
[I] as follows: K = 140 gm-cm , 2B = 219,OGO gm-cm-set , Zp = 6760 gm-cm . 
The angle 4 was determined from the following condition: 

[&I,=,= ImR Ucoscp 

from which: g = 45.23" when m = 60", c = 62.01° when cp = 70", c = 76.60" 
when cp = 80". Prom Table 4 It Is seen that at the higher latitudes the 
deviations of the gyrocompass reach significant amounts. 

Let us note that the variational equations for a space gyrocompass can be 
obtained from Equations (4.3). Indeed, when E = n/2 from (3.1) and (4.2) 
we flndthat 

sin 6* = lm V / 2B (4.5) 

and, consequently, for a space gyrocompass 

E, = zmv, 8, = e = 1/4Ba -(ZmQz 

Here, as Is not difficult to see, the following relations hold: 

(4.6) 



Table 4 
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I - 

- 

/ - 

- 

i - 

/ 

I 
I 

- 

i - 

/ 

I 
I - 
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5. Qmooomprrr on a fixed foundrtion. In the case when the gyrocompass 

1s Installed on a foundation which is stationary relative to the Earth, 

UE = UN = 0,cp = con& Here we shall have 

V = RUcoscp, &* = 0. 9 52 = Usincp 

Relation (4.2), from which 6" is determined, takes the form 

(5.1) 

2B sin (8 - 6*) U coscp = x sin 6* cos 8* (5.2) 
In correspondence with (4.3) the variational equations will now be 

UCOSC~S,-+S, -lmR~Icoscp Usincpx, = 0 

Xl ‘- &P-nzRU2 
L 

cos2(p)+ Ucoscp 1 z2f$ Usincpx,= 

lm RU cos cp 
= ( El 

- 1) Usincp (5.3) 

- U sin cp x1 + 
P- mRIJacosscp 

53 + 
&a 

mRU cos q~ lm RU cos cp 
x0'= 0 

x3’+ Usinrpx,-&( E:,U coscp + x cos 2&q x4 = 0 

where E, and =S are determined by Expressions (4.4). 

In order to satisfy, at least approximately, the relation (4.5), which Is 

automatically fulfilled for a space gyrocompass at any law of maneuvering of 

the ship and which ensures the.absence of ballistic deviations In It, the 

parameters for ordinary gyrocompasses are usually chosen so that on a fixed 

foundation 
E1= lm RU coscp (5.4) 

Condition (5.4) is ensured by different construction methods In the dif- 

ferent types of gyrocompasses. 

When condition (5.4) is fulfilled, the relation 

& (P - mRU2 cos2cp) + Ucoscp = PI mRU coscp 

will hold. 

We now Introduce the new variables 

x, = UCOScpXl, x2 = x2, x3 = 53, x, = (E2/ El) ucoscpx, 

Denoting 

and setting 

p2 =lP&‘(x cos 28* + lm R U2 cos2 cp) 

P-mRU”cos2(p~P=:mg 

we can reduce the variational equations (5.3) to the form 

X,+x,'-Qx,=0, -Qx,+Ycx,1-x4'=0 

x;- vex, + QX, -= 0, Q_Y,, L S,' - "" ,y, zzz 0 _ V.2 

(5.5) 

(5.6) 

(5.71 

(5.8) 

(5.9) 
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We note that for a space gyrocompass relation (5.2) takes the form 

2B cos 6’ U cos qz -(4BZ!lmR)sin 6*cos b* (5.10) 

Hence It follows that 

2Bsin6+ = ImRUcoscp (5.11) 

Here, from (3.1) and (5.11) we find that 

X cos 26* = (lmR)-1 (4B* - 2 (ImR U coscp)z] (5.12) 

Hav 
9 substituted Into (5.7) Expression (5.12) which we have found for 

w co8 2b , and having taken Into account that In accordance with (5.11) the 
relation 

$ = 2B cos 6* = v4B2--(lmR U ~0s~)~ 

holds when c = n/2 , we find that In a space gyrocompass 

CL2 = v2 (5.13) 

The characteristic equation of the system of differential equations (5.9) 

has the form 
h’+(v*+p*+252*)h*+ 2 * vp --(v*+p2)52* + 524=0 (5.14) 

The roots of Equation (5.14) will be purely Imaginary. Let us denote them 

A,, X2 = * im,, A,, h, = * io, (5.15) 
When p = v , i.e. for a space gyrocompass 

ol= Y - 9, 0,-v+ 52 (5.16) 

which Is In accord with the results (3.4) derived above. 

In the case when /l > v, which occurs In the ordinary gyrocompass, for 

~1 and ~2 > we can get the approximate expressions 

Q1Z I- 
II 

$(;“X Q*]w, 02 = [I + &)Q*]p~p (5.17) 

Let us go on to the construction of the solution of the system of dlffer- 

entlal equations (5.9). For greater generality let us consider the system 

of differential equations 

x; - v*x, -t QX, = y1(0, QX, +x;- -$ x4 = Ys (0 

x, + X2’ - 9x, = y*(l), - fax, i- v2x, -L X4’ =y4w 

(5.18) 

Here the functions 1/, (t) (j - 1,. . ., 4) are defined as the external 

forces appllqd to the system. When y,(t) = 0 (j = 1,...,4) the system of 

differential equations (5.18) coincides with the system of differential equa- 

tions (5.9) which describe the natural oscillations of the gyrocompass. 

In the original equations (1.25) and (2.6) the generalized external for- 

ces applied to the system were denoted by MC*, M,**, M,* and MI/** 
respectively. As is not difficult to verify, the functions r/,(t) (J=l, ..,4) 

occurring in Equations (5.18) are related to the generalized external forces 

by the dependencies 



Yl (4 = & WC**, Y% (0 = * Iri,RU COScp Ml? 

YSV) = - &A Y4 (0 = & M** 

(5.19) 

Here Mtl** is the moment of the external forces with respect to thr 

y*-axis, which, according to Table 1, satlsf?es the relation 

My** cosg + M,* sin p = MC* (5.20) 

By Introducing the matrices 

D-v= 0 8 (Xl Yl 0) 
1 D-S-2 0 XI Ya tt) 

fP)= 0 Q D “;” 9 -- x= _-& 9 Y w = ya (t) 
(5.21) 

-Q 0 v= D X& Y4 6) 

where D = d/at we replace the system of scalar differential equations (5.18) 

by the matrix equation 
w)X=Yw (5.22) 

By (5.15) the determinant of the matrix y(D) Is written thus 

A (D) = (Da + 0;) (Da + of) (5.23) 

If -P(D) denotes the adjolnt matrix of matrix j(o) , we can represent 

the general solution of the system of equations (5.18) In the form 

Re [iFj, (i0J1 Xk (0) cos OQ - 
(5.241 

4 4 

Re [iFjk (i0J1 Xk (0) COS WJ - 

- i IIll [iFjk (@)I Xk (0) 
t 4 

sin O,t}-k $ 2 Njk (t- V) yk (Z) a7 
#=I o k=t=l 

where 
e, = o8 (0%" - UP) (s= 1, 2) 

(j k 1 9 . . . 9 4) 

(5.25) 

and the N,,(t) are the elements of the weighting function matrix 

N (t) = IINjk (OIJ 

for the system of equations (5.18). The functions K,,(t) have the form 

Njk (t) = --$Re [$jk (ial) eioltl +kRe [iFjk (lo,) e*Oxtl (i, k=l,. . , 4) (5.26) 

We use iFjk (&) (s= 1, 2) to denote the elements of the matrix 

i [F (D)ID=;~~, 

which IS 
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where 

iF (io,) = 
iAn A@ i Au(‘) A$’ 

A# i Asa@ ASS(P) i AM(‘) 

i AhI A*p i Am(‘) A,&‘) 

(5.27) 

(5.28) 

A,,(Y) = ‘w,3 - (p2 + 522) OS, A$’ = - y2(,j,2 - Qzv” + p2y” 

A,;“) = us2 + Q2 p2 / v2 - p2, A (6) = A,,(S) 

A 31 (‘) = - (Q + S$.L~/V~)O~, AE”’ = 520,~ + Qp2 - Q3 

A 
41 
fs) = _ Qro,2-- i-w+ Q3, A 

42 
(')= - 252~3~ 8 

A,,@) = A,,(‘), A 
23 

(g) = A ts) 
41 9 

A 14(s) = A 32(f), A,,@) = A,,@) 

A 33 (') = us3 - (v" + fi2) co,, A,,(') = -6&2p2/v2--- w+p3 

A,,@) = v2as2 + fi2v2 - v4, A,,@) = A,,@) 

The transformation of Equations (5.18) to normal coordinates Is of lnter- 
est. To determine the normal coordinates It Is first necessary to represent 
th;th';;trlx F (io,) = [F (WI-b, as the product of a column matrix and a row 

F (io,) z K (io,) I (iw,) (s = 1, 2) (5.29) 

As can be seen from (5.~7) the Indicated matrices can be taken as 

where 

(5.30) 

KI=;& K,= i 
cog2 + v2 - 522 

4v20, 

-6J .a -1. v2 -I- CP 
K, z --?e 

- O,2 + v2 - c22 

4 Ldv”, 
K, = i 4Q0, 

2i I- OS:” -i- (p’ i- Q2) Cd,], I, = 2v2(- Cog2 + Q2 + p2) 

I, = 4i!lv20s, I, =L 2Q (OS2 + .uz - 522) (5.31) 

The original coordinates X X1 will be related to the normal coordl- 
nates ~,>TI~,!~,Q by the fol!~&%~ relations: 

1 1 
x, = T E, -t -2- E2 

x2 = 
a,2 _I_ y2 - 522 w2* + v2 - 512 

4v"o, rll i- 4v%, 92 

x2 = 
- 015 + v2 + 9” E, + - up2 4fn:: + w Fa 

4Ilv' 

x, = 
- (Q + y’L - (22 co22 + v2 - 522 

4560, r1-t- - 412c0, % 

Also, It Is not difficult to get from (5.32) that 

(5.32) 
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% = 
2 (- 69 + va - S-P) vh,Xp + 2 (- cl.@ - ve + SIP) QOlX, 

(OIla - 02) (9 - as) 

%s = 2 (- 6.Q + v2 + ay x, - 4 max, 
0aa - 0~2 

rla = 
2 (0~~ - va + 522) v%.l,x, + 2 (QQ + vz - S-P) 520,X‘ 

(WI2 - co%*) (v’ - 9”) (5.33) 

The differential equations satisfied by the normal coordinates will be 

_& 2 (- cog + pL‘d + Qa) 4 !G!v8 
dt - o,rlr= CO** - 69 _ Yl 0) + OS’ - CO? Y3 0) 

9 + @l%l = 
2v* (- of - 628 + p) za(o,a + p - i-P) 

0, (oaZ - o?) Ya tt) + 01 (@a# - 631') Y4 0) 

d%s 2(6.@--pa - 82) 4 8vZ 
7 - %9a = co22 - 01~ M 0) - Oh - 012 Ya (t) 

- P) 2 + %%s = 2va$a; ““,,, ?h (t) - 
28(6Q+p- !P) 

0, (@aa - OIZ) y, (t) (5.34) 

Note that ehen the values (5.161, which give m1 and ma for a space 
gyrocompass, are substituted into expressions (5.33) they take on the form 

e, = Xl + v&l, ‘11 = vx, -I- x,; E, = Xl - vX3, qa = vx, - x, (5.35) 

Here sl,rli it = 1,2) will satisfy the differential equations which can 
be obtained from (5.34) if for m, and mua we substitute the values (5.16). 
These equations will be 

h' - (y - Q) rll = Yt (4 + VYS (t), Es - (v + Q) ‘12 = Yl (a - VYa 0) 

111’ + (v - 61) Er = VI, 0) + Y4 @A ‘12 + (v 4- ~2) %n = ~a 0) - Y, 0) (5.36) 

6. Aotion ot rurdom forow on UI undmqped #rooompaar. Under zero ini- 

tial conditions the law of motion of a gyrocompass under the action of ran- 

dom forces will be, according to (5.24), 

X,(t) = $ i .Fj& (t - Z) yk (Z) d7 fj=1,....4) (6.1) 
k-=1 0 

where the external forces g*(t) are defined by Expressions (5.19). Let 

&_:~M~r*=lkf~~ =0 (6.2) 
and let g,* be some stationary random process with zero mean. Here, accord- 

ing to (5.191, 

Y,(t) = 0 (p= 1, 2, 3), t&) = 1 MT,* 1mR 
'(6.3) 

Expressions (6.1) now take on the form 

X,.(0 = iNj* (t - %I Y4 w df 
(i=i,...,4) (6.4) 

0 

According to (5.26) the elements of the wei&ting function matrix N,,(t) 

(2 = 1,...,4) occurring in :(6.4) can be put in the form 
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N,, (t) = a,,sin w,t - b,,sin co&, N,, (t) = - a24 cos colt + b,, cos o,t (6.5) 

N,, (t) = us4 sin colt - b,, sin co& N,, (t) = - ad4 cos:o,t + b,, cos o,t 

where 

aja = $Ajp(‘), bjd = -$ Ada’ (j=l,...,4) (6.6 1 

while Ajas) and es (j=1,...,4;s=i,2) are determined from Expressions 

(5.28) and (5.25). 

The mathematical expectations of the random process X,(t) (3 = 1,...,4) 

equal zero. 

The variances of X,(t) (J = 1,...,4) are determined by 

nj(tI=Sj ( Nj4 t_7)Njl(t_Ua)K,(~-Ua)dz~ (i=i,. . . , 4) (6.7) 
., 0 

where X14 (7 - c) Is the correlation function of the stationary random pro- 

cess y,(t) . 

For the Gaussian random process of the white noise type 

K,(z--Cl) = 68 (z - 0) (6.8) 

where a(7 - 0) Is the Dlrac delta-function. By (6.5) Expression (6.7) 

takes the form 
(6.9) 

(i = 1,. . . , 4) 

Expressions (6.9) for the variances of the angles determlnlng the errors 

of the gyrocompass contain terms which Increase linearly with time. For suf- 

ficiently large values of t these terms can attain considerable magnitudes 

and will by themselves determine the amount of the variances. 

We note that the time variation law of-the signal, variance at the output 
of the undamped system was studied for a second-order system by Sveshnikov 
c71. 

The Increase with time of the variance arises because of the absence of 

damping In the gyrocompass being considered here. The Indicated circumstance 

Is the reason for limiting the time Interval during which a damping device 

is switched off. 
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